### Suicide Prevention Across the Educational Continuum 6-Part Webinar Series



Mountain Plains (HHS Region 8)

C Mental Health Technology Transfer Center Network Funded by Substance Abuse and Mental Health Services Administration



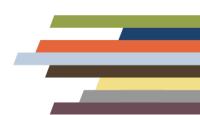
Mountain Plains (HHS Region 8)

Prevention Technology Transfer Center Network Funded by Substance Abuse and Mental Health Services Administration

# Disclaimer

This presentation was prepared for the Mountain Plains Mental Health Technology Transfer Center (Mountain Plains MHTTC) and Mountain Plains Prevention Technology Transfer Center (Mountain Plains PTTC) under a cooperative agreement from the Substance Abuse and Mental Health Services Administration (SAMHSA). All material appearing in this presentation, except that taken directly from copyrighted sources, is in the public domain and may be reproduced or copied without permission from SAMHSA or the authors. Citation of the source is appreciated. Do not reproduce or distribute this presentation for a fee without specific, written authorization from the Mountain Plains MHTTC and Mountain Plains PTTC. Please call 701-777-6367 (Mountain Plains MHTTC) or 801-213-1475 (Mountain Plains PTTC).

At the time of this presentation, Elinore F. McCance-Katz served as SAMHSA Assistant Secretary. The opinions expressed herein are the views of Hilary Coon, PhD and do not reflect the official position of the Department of Health and Human Services (DHHS), SAMHSA. No official support or endorsement of DHHS, SMHSA for the opinions described in this presentation is intended or should be inferred.




Mountain Plains (HHS Region 8)



Mountain Plains (HHS Region 8)

C Prevention Technology Transfer Center Network Funded by Substance Abuse and Mental Health Services Administration





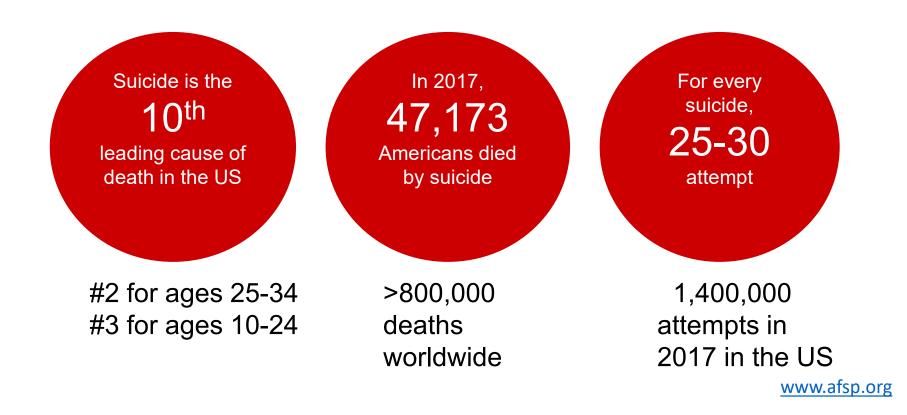


Mountain Plains (HHS Region 8)

Prevention Technology Transfer Center Network Funded by Substance Abuse and Mental Health Services Administration

### **World Class Resources to Discover**

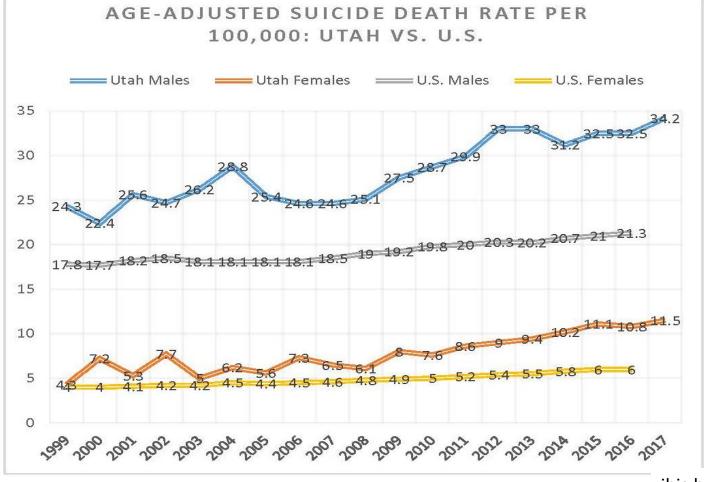
### **Genetic Risks for Suicide Death**


### Hilary Coon, PhD

#### Professor

Department of Psychiatry University of Utah School of Medicine

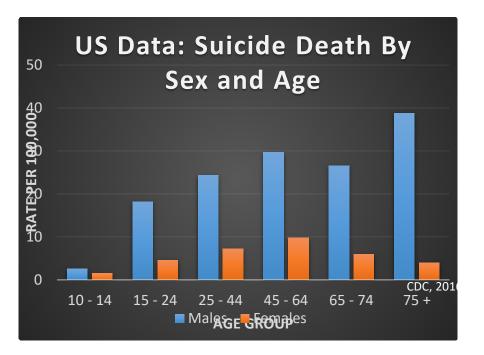


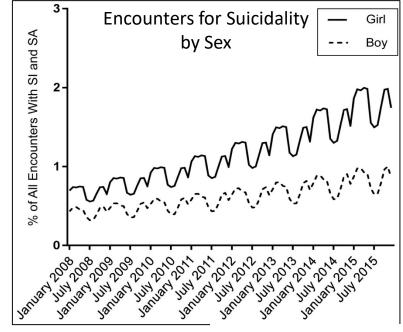

#### Suicide: A Public Health Crisis





#### **Rising Suicide Death Rates**


- Incidence of suicide death has increased 33% in the US since 1999
- In this same time period, the increase has been 46% in Utah; dramatic increase in female suicide






#### Epidemiology: Suicide Death Vs. Attempt

- RATE: Suicide death: ~2/10,000 per year; attempts 25-30 times more common
- SEX DISTRIBUTION:
  - Suicide death: male:female ratio=3.8:1;
  - Attempts: more difficult to count accurately, but ~twice as common in females, especially in youth





Plemmons et al., Pediatrics, 2018



#### Suicide Death: Psychopathology & Familial Risk

- Many individuals who die by suicide struggle with mental illness
  - BUT most individuals who have mental illness do not die by suicide
  - AND suicide risk is significantly familial<sup>1</sup>

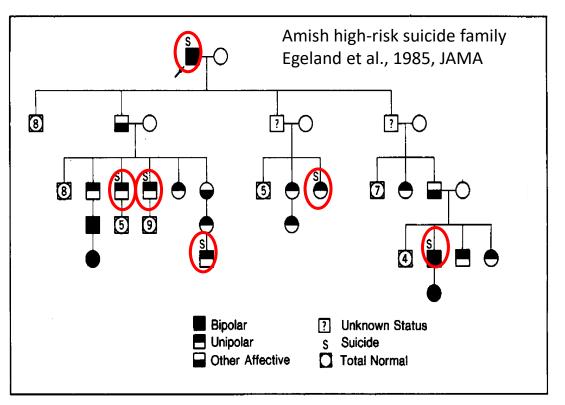



Fig 1.—Pedigree 214.

#### Suicide Death: Psychopathology & Familial Risk

- Many individuals who die by suicide struggle with mental illness
  - BUT most individuals who have mental illness do not die by suicide
  - AND suicide risk is significantly familial<sup>1</sup>
  - Familial risk is independent of psychopathology<sup>2</sup>
  - Risk factors unique to suicide?

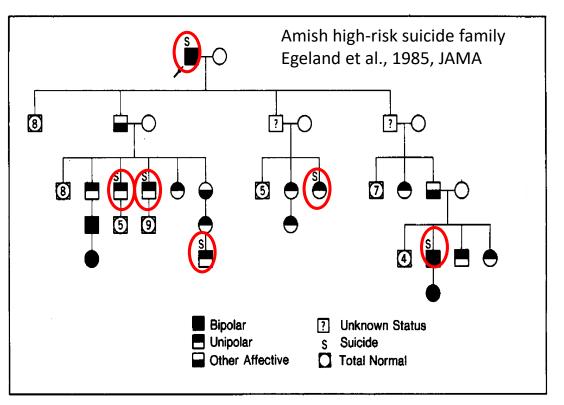


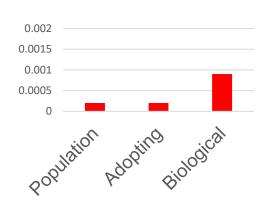

Fig 1.—Pedigree 214.

#### Suicide Death: Aggregated Evidence for Genetic Risk

- Twin studies:
  - Fraternal : 4 times the population rate
  - Identical : 11 times the population rate



Tidemalm et al., 2011; Zai et al., 2012; Pederson & Fiske, 2010; McGuffin et al., 2010; Baldessarini & Hennen, 2004; McGuffin et al., 2001; Roy & Segal 2001; Wender et al., 1986


#### Suicide Death: Aggregated Evidence for Genetic Risk

- Twin studies:
  - Fraternal : 4 times the population rate
  - Identical : 11 times the population rate



#### Adoption studies:

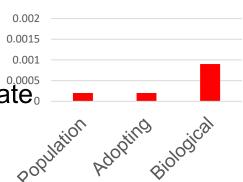
- Adopting relatives: no increased risk
- Biological relatives: 4-5 times the population rate



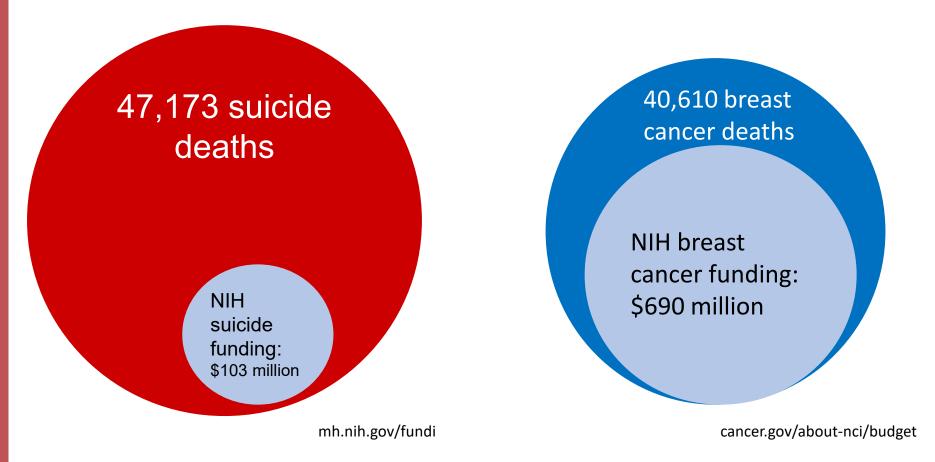
Tidemalm et al., 2011; Zai et al., 2012; Pederson & Fiske, 2010; McGuffin et al., 2010; Baldessarini & Hennen, 2004; McGuffin et al., 2001; Roy & Segal 2001; Wender et al., 1986

#### Suicide Death: Aggregated Evidence for Genetic Risk

- Twin studies:
  - Fraternal : 4 times the population rate
  - Identical : **11 times** the population rate




#### Adoption studies:


- Adopting relatives: no increased risk
- Biological relatives: 4-5 times the population rate.

#### • Evidence: genetic contribution to risk of suicide death = ~50%

Tidemalm et al., 2011; Zai et al., 2012; Pederson & Fiske, 2010; McGuffin et al., 2010; Baldessarini & Hennen, 2004; McGuffin et al., 2001; Roy & Segal 2001; Wender et al., 1986



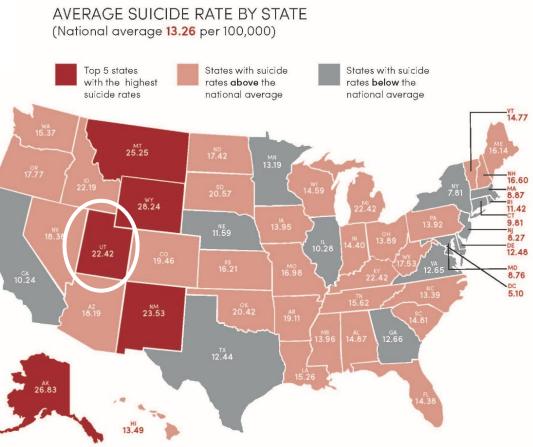
#### Health burden vs. research funding





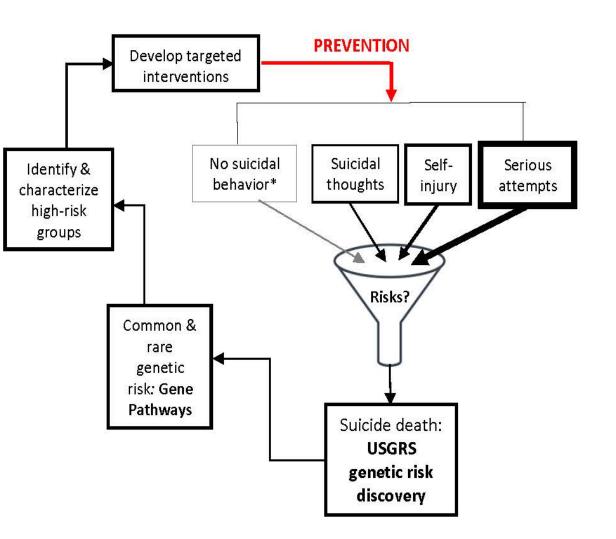
©UNIVERSITY OF UTAH HEALTH

### Suicide Risk Studies: Why Utah?


- Utah in the top 6 for suicide rate (MT currently highest, then AK, WY, NM, ID, UT).
- Suicide = leading cause of death for persons under age 25 in UT.

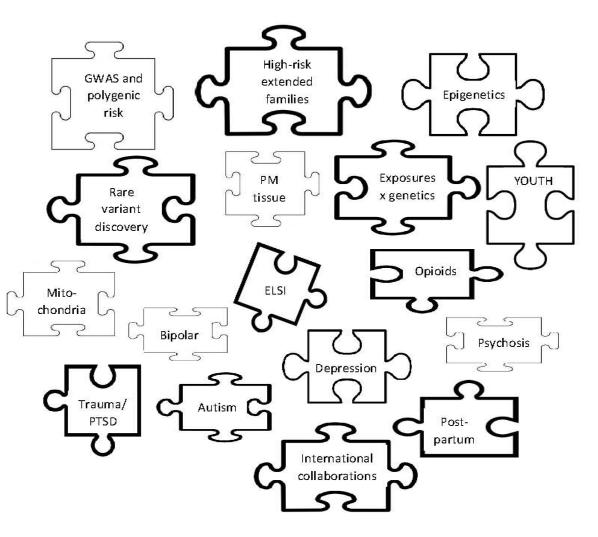
#### **Utah Resources**

- Central Medical Examiner
- >7,000 cases with DNA (growing)


#### Utah Population Database

- Medical records
- Demographics
- Genealogical records
- Exposure data




### The need to study suicide death

- Risk prediction challenging:
- >50% suicide deaths occur w/ no evidence of prior attempts
- Though suicide attempt is the best predictor of death, only ~7% of attempters go on to die by suicide
- BUT: suicide death: ~50% heritable
- Opportunity with a world class resource: Utah Suicide Genetic Risk Study (USGRS)
  - OME: 10,000 with DNA by 2024
  - >95% link to UPDB





#### Objectives: Utah Suicide Genetic Risk Study



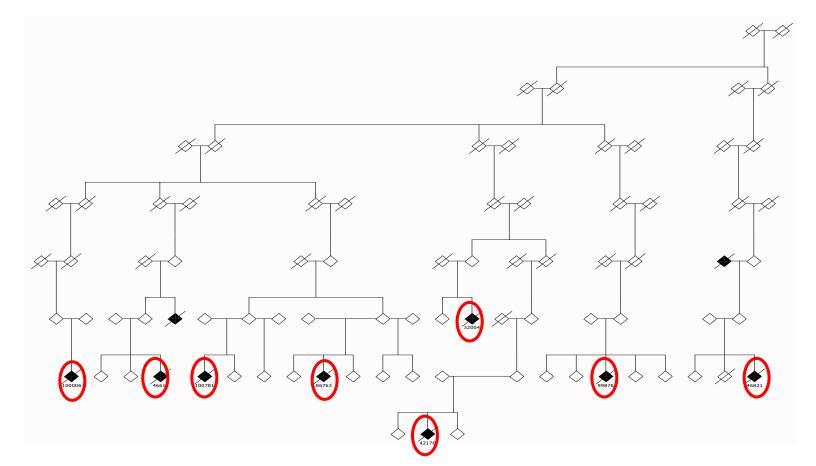
Find genetic risk factors for suicide.

Characterize genetic risk subgroups.

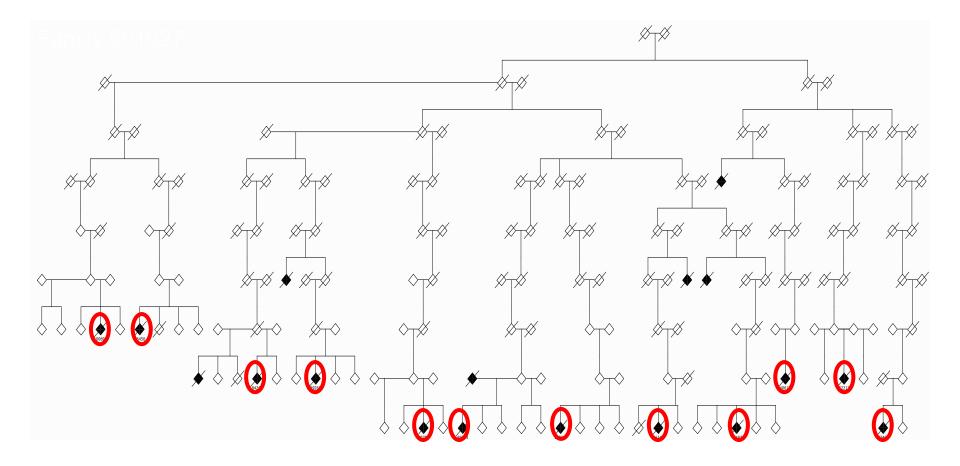
Understand biological mechanisms.

Recognize ELSI impacts.




# Utah Suicide Genetics Project: linking to phenotype data

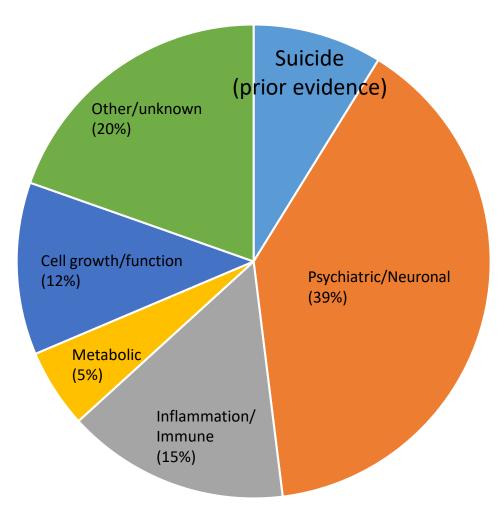
- Link to Utah Population Database; de-identification
- Studies in high-risk family clusters
  - power to detect possible genes; increase in genetic homogeneity
  - Distant relatives of very large families minimize shared environmental risk: focus on genetics




### Large High-Risk Utah Families

- Select 43 highest risk families with most cases with DNA
  - Mean age at death=34.3 years (~8 years younger than overall cohort mean)
  - Genome-wide genotyping data: look for shared genomic regions
  - Prioritize: genes/variants

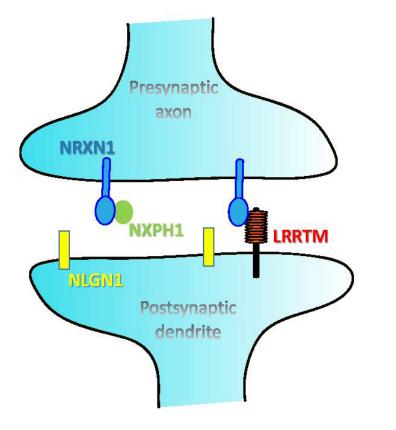



# Example of one of the largest Utah extended families



|                     | 25014           | Region           | N sharing | 2021 1.123412 00 04412 |
|---------------------|-----------------|------------------|-----------|------------------------|
| Sharing Families    | Chromosome      | length           | Cases     | P-Value <sup>a</sup>   |
| 709, 8556           | 1p34.2          | 121,550          | 6, 5      | 3.47E-12               |
| 791533, 540775      | 1q31.1-q31.2    | 895,549          | 3, 7      | 4.63E-09               |
| 601627              | 2p16.3          | 918,021          | 6         | 1.94E-10               |
| 176860, 11593       | 2q32.2 – q32.3  | 991,125          | 5,6       | 4.31E-12               |
| 601627              | 2q36.3 - q37.1  | 554,589          | 6         | 2.39E-10               |
| 553615              | 3p14.1          | 553 <i>,</i> 999 | 8         | 8.87E-11               |
| 129334, 11593       | 3q26.33         | 155,082          | 4, 5      | 7.94E-12               |
| 603481              | 4q26            | 878,016          | 7         | 3.08E-08               |
| 807334              | 4q28.3          | 1,340,919        | 5         | 2.02E-07               |
| 8556, 66494         | 4q35.1 – q35.2  | 441,202          | 4, 5      | 1.82E-12               |
| 553615 <sup>b</sup> | 5q23.3 - q31.1  | 2,620,770        | 9         | 2.39E-10               |
| 553615,603481,      |                 |                  |           |                        |
| 176860°             | 5q23.3 – q31.1  | 2,135,012        | 7, 7, 7   | 1.30E-18               |
| 601627              | 5q33.3 – q34    | 694,644          | 7         | 5.47E-10               |
| 553615              | 6q11.1 - q12    | 1,576,180        | 8         | 1.34E-10               |
| 60205               | 6q24.3          | 459,602          | 5         | 4.02E-07               |
| 601627              | 7p21.2          | 856,645          | 6         | 2.04E-10               |
| 957634, 595955      | 7q36.1          | 883,853          | 3, 4      | 6.44E-11               |
| 587072, 595955      | 8p23.1          | 875,010          | 4, 5      | 4.71E-11               |
| 233769              | 10p15.3         | 472,479          | 7         | 1.11E-09               |
| 11593, 8556         | 10p12.33        | 184,567          | 4, 5      | 3.11E-11               |
| 27251, 233769       | 10q21.3         | 321,479          | 7, 5      | 8.22E-15               |
| 209487              | 11p11.2 - q12.1 | 9,206,070        | 6         | 6.60E-08               |
| 540775              | 11q13.3         | 451,605          | 7         | 6.20E-09               |
| 209487, 66494       | 12q.12          | 399,570          | 5,5       | 2.14E-12               |
| 709                 | 13q12.3         | 605,320          | 7         | 1.86E-08               |
| 27251, 41469        | 13q14.2         | 756,962          | 5,4       | 2.93E-12               |
| 590241, 601627      | 14q23.1 – q23.2 | 1,660,713        | 5, 8      | 5.91E-14               |
| 709                 | 15q21.3 – q22.2 | 1,045,187        | 6         | 2.74E-08               |
| 66494               | 15q22.2         | 772,162          | 6         | 5.44E-08               |
| 27251, 233769       | 18q11.2         | 79,657           | 8,6       | 5.22E-15               |
| 27251, 622459       | 19q13.12        | 299,919          | 8,3       | 2.89E-12               |

#### 30 Significant Genomic Familial Regions


### 204 genes implicated by SGS regions

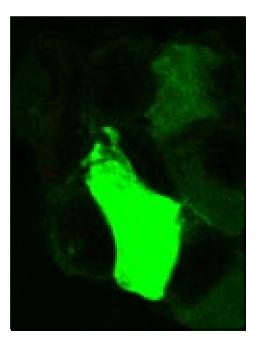


### Follow-up Functional work: NRXN1

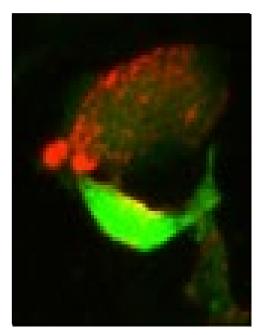
#### NRXN1: synaptic gene in a significant familial region

- A key synapse organizing molecule
- Prior associations with psychopathology
- Two specific NRXN1 genetic variants showed statistical association with suicide death

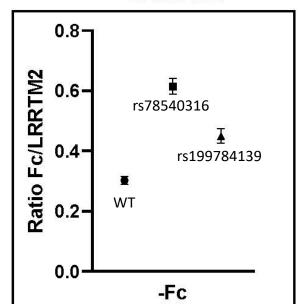



Tests of associated variants:

- Do variants interrupt binding with partners
- Do variants directly inhibit synapse formation


### Evidence for functional impact: Neurexin Binding

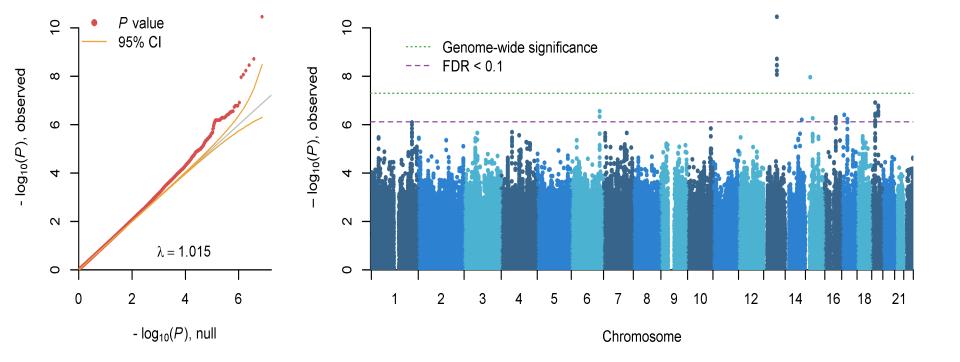
Purify portion of *NRXN1* outside membrane; transfect with binding partner + fluorescent tag to visualize synaptic binding.


The associated variants showed increased binding to the postsynaptic binding partner, leucine-rich repeat transmembrane neuronal 2 *LRRTM2* 

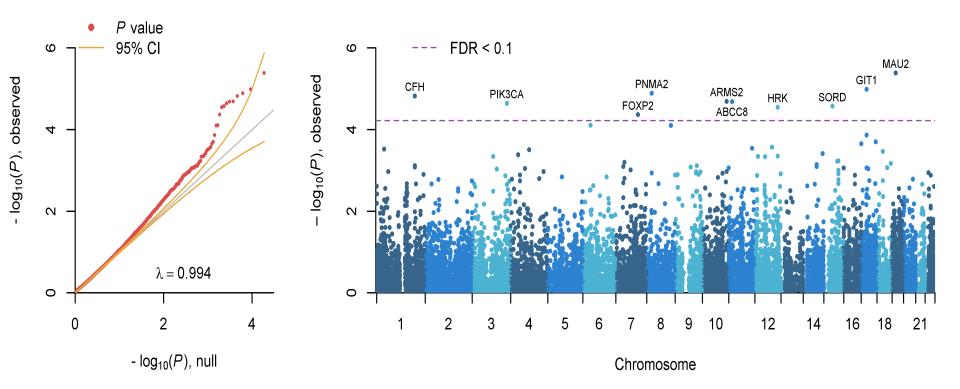


NRXN1 only




NRXN1 with binding partner LRRTM




LRRTM2

Evidence for significant *increase* in synapse binding in the presence of genetic changes associated with suicide risk

# Genome-wide association (GWAS): 3,413 suicides, 14,810 controls, matched for ancestry



# Additional 10 genes nominally significant from gene-based tests of >18,000 genes



#### GWAS: 21 genes implicated

| Genes associat         | ed with signi | ficant genomic regions                                    |
|------------------------|---------------|-----------------------------------------------------------|
| Symbol                 | Chr           | Associations                                              |
| KLHL1                  | 13q21.33      | Actin: assoc. with dopamine metabolism                    |
| DACH1                  | 13q21.33      | Chromatin remodeling: neocortical development             |
| UBE3A                  | 15q11.2       | Ubiquitin; Angelman syndrome; intellectual disability     |
| ATP10A                 | 15q11.2       | Ubiquitin; synaptic plasticity; autism risk association   |
| NDRG4                  | 16q21         | Cell cycle progression; response to cerebral ischemia     |
| SETD6 <sup>d</sup>     | 16q21         | Methylation (epigenetic); receptor signaling              |
| CNOT1 <sup>b</sup>     | 16q21         | Transcription regulation; neural development; GWAS SZ     |
| GOT2                   | 16q21         | Mitochondrial glutamate transfer; Alzheimer's association |
| HS3ST3B1°              | 17p12         | Membrane protein; inflammation; dementia                  |
| COPRS <sup>d</sup>     | 17q11.2       | Histone binding (epigenetic)                              |
| UTP6                   | 17q11.2       | Interaction between miRNA and methylation (epigenetic)    |
| NCAN <sup>a,b,c</sup>  | 19p13.11      | Neurocan; cell adhesion; bipolar; SZ; mood; ADHD          |
| HAPLN4 <sup>a,b</sup>  | 19p13.11      | Formation of GABAergic synapses                           |
| TM6SF2 <sup>b</sup>    | 19p13.11      | Transmembrane; alcohol dependence, alcohol-liver disease  |
| SUGP1 <sup>b</sup>     | 19p13.11      | Splice factor; alcoholic liver disease                    |
| MAU2 <sup>b</sup>      | 19p13.11      | Chromatid cohesion factor; neuronal maturation            |
| GATAD2A <sup>b,d</sup> | 19p13.11      | Transcriptional repressor; SZ                             |
| TSSK6 <sup>b</sup>     | 19p13.11      | Chromatin remodeling; fertility                           |
| NDUFA13 <sup>b</sup>   | 19p13.11      | Mitochondrial membrane; Parkinson's disease               |
| YJEFN3 <sup>b</sup>    | 19p13.11      | Mitochondrial protein; unknown function                   |
| CILP2 <sup>b</sup>     | 19p13.11      | Cartilage scaffolding; triglycerides; stroke association  |

Gene pathways, Genome-wide associations

#### Gene Ontology (GO) Functional Pathways:

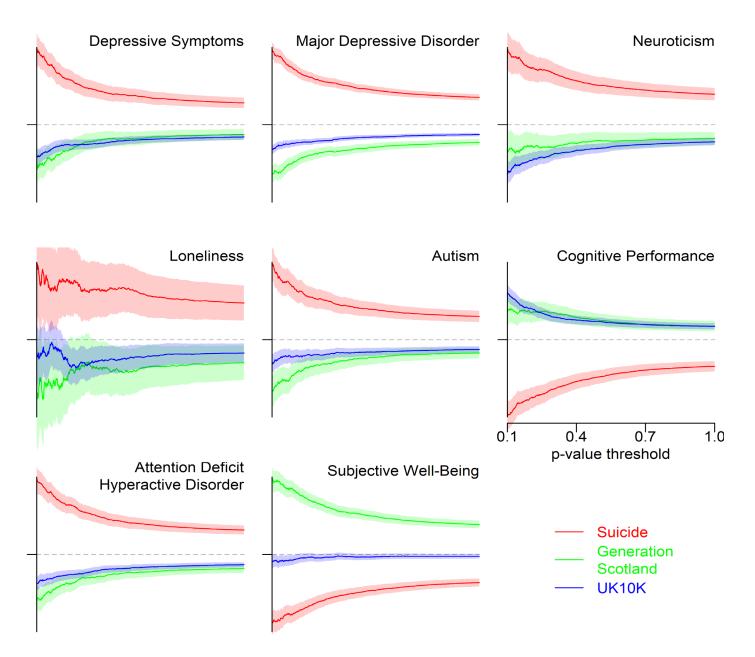
Neuronal development (23%) Metabolic (26%) Mitochondrion (23%)

### **GWAS** Catalog:

Schizophrenia (13%) Alzheimers (10%) Bipolar (7%)

#### **PsychENCODE:**

Differential gene expression in PM brain of those with SZ, AUT, BD (50%)


#### Polygenic risk scores of Utah suicides

What is a polygenic risk score?

- 1) Quantitative score reflecting background genetic risk of a trait
- 2) Take genome-wide p-values from an external, published study
- 3) Each p-value = association of genotype at that location to the trait
- 4) Apply p-values to genotypes in current study to create a score
- 5) This score = potential underlying biological risk of associated psychopathology.

*Hundreds* of polygenic risks can be computed for psychiatric, behavioral, and medical traits

### Polygenic risk scores of Utah suicides



# Genome-wide *rare functional variant* screen from genotyping data

- Try an efficient strategy: look for association with variants likely to affect gene function
- Kept 40,189 variants in the coding part of genes
- Compared frequencies between suicides and large, publicly-available resources of controls matched for ancestry

# Genome-wide *rare functional variant* screen from genotyping data

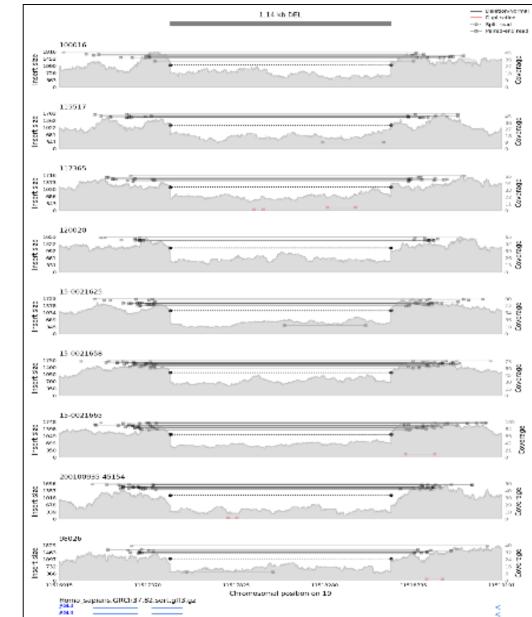
#### **5** genome-wide significant variants

- 1) PER1 and SNAPC1: supporting postmortem evidence suicide death risk.
- 2) PER1: supporting association with bipolar disorder.
- 3) PER1, TNKS1BP1, ESS2: supporting association with schizophrenia.
- *4) PER1, TNKS1BP1*, *ADGRF5*: other evidence of involvement with immune system, circadian rhythm, signal transduction processes.

These genes are immediate targets for investigation

They also target new gene pathways/mechanisms of risk:

- circadian rhythm
- neurodevelopment
- neurodegeneration


# Rare structural variants (deletions, duplications, inversions)

#### DATA:

- 281 suicides with highquality whole genome sequence (WGS) data;
- Jointly processed w/ 524
  Utah controls (Utah longevity study, Utah CEPH)

#### ANALYSIS:

- LUMPY used to detect SVs (method with improved sensitivity; Quinlan lab; Layer et al., 2014)
- Compare to UT controls, and WashU control data (17,795 participants; *Abel et al.,* 2019)



# Structural variants (deletions, duplications, inversions)

# Preliminary indication of enrichment of SVs in neuronal pathways; some overlap with GWAS gene pathways

#### To Do:

More analysis!

- Overlap with exons, other regulatory genomic features (TFBS, microRNAs, enhancers, epigenetic control)
- Validation
- Familial? Phenotypic associations?

# NEW SEQUENCE DATA COMING SOON: ~400 more highly prioritized Utah suicide deaths

| Psychiatric Genomics Consortium Suicide Working Group |              |                  |  |  |
|-------------------------------------------------------|--------------|------------------|--|--|
| Cohort                                                | With attempt | No attempt       |  |  |
| Vanderbilt                                            | 500          | 100,000          |  |  |
| PGC MDD                                               | 1622         | 8786             |  |  |
| PGC Bipolar                                           | 3264         | 5500             |  |  |
| PGC SZ                                                | 1683         | 2946             |  |  |
| PGC substance abuse                                   | 6320         | 1 <u>1244</u> 01 |  |  |
| PGC eating disorders                                  | 1000         | 3 <u>244</u> 31  |  |  |
| UK Biobank                                            | 3300         | 35,000           |  |  |
| iPsych                                                | 7003         | 19,559           |  |  |
| deCode                                                | 800          | 3 <u>864</u> 31  |  |  |
| Total                                                 | 25,492       | 171,771          |  |  |

### Progress

GWAS with 3,143 suicides Docherty et al., AJP, in revision

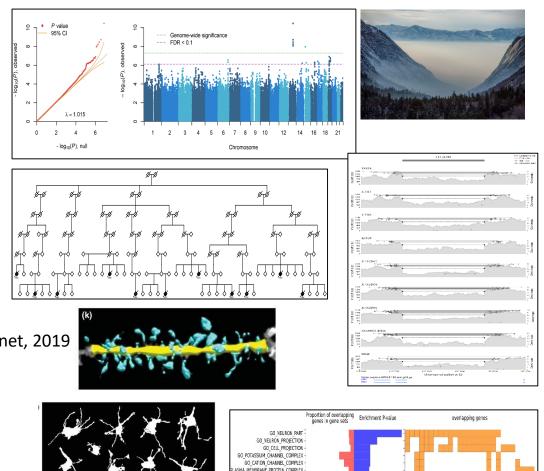
High-risk pedigrees Coon et al., Mol Psychiatry, 2018 Nobre et al., IEEE Trans Vis Comput Graph, 2019 Coon et al., Transl Psychiatry, 2013

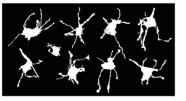
Rare risk variants DiBlasi et al., Mol Psychiatry, submitted

Exposures Bakian et al., 2015

#### Ethics

Shade et al., Am J Med Genet B Neuropsychiat Genet, 2019 Kious et al., AJOB Empirical Bioethics, submitted


Suicide risk in demographic/clinical subgroups Kirby et al., Autism Res, 2019 Keeshin et al., Suicide Life Threat Behav, 2018 Darlington et al., Transl Psychiatry 2014 Gray et al., Suicide Life Threat Behav, 2014


**Tissue studies** Das et al., J Comp Neurol, 2019

Whole Genome Sequence

**Epigenetics** 

Mitochondria







### Next Steps

#### Molecular data

New genotyping: 5,500 New prioritized WGS: 400 Epigenetic analysis

Follow-up statistical modeling

Follow-up analyses of PM tissue

#### Phenotypes/biomarkers

Link to physician notes Psychological autopsy in youth

Suicide and the opioid epidemic

Toxicology: hair samples

#### **Ethics studies**

New survivor groups (rural, minorities) Provider opinions









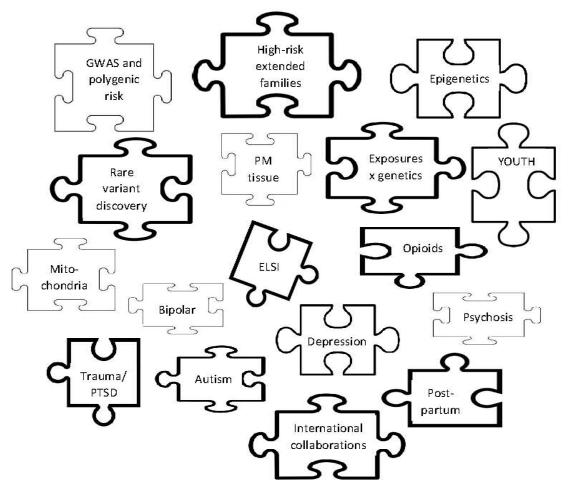


#### **Collaborations**

New local/regional: collaborations International








#### **Reminder: suicide is COMPLEX**

There are likely hundreds of genetic variants leading to suicide risk.

We are in a probabilistic universe, not a deterministic universe.

No one genetic change, in the absence of other genetics, and complex environmental risks/exposures can cause suicide.



#### **Collaborators & Acknowledgments**

#### **Psychiatry**

Douglas Gray, MD Anna Docherty, PhD Emily DiBlasi, PhD Andrey Shabalin, PhD Amanda Bakian, PhD Amanda Bakian, PhD Nancy WIlliam, MS Leslie Jerominski, MS Brian Mickey, PhD John Anderson, BS

#### **Internal Medicine**

Nicola Camp, PhD Rob Sargent, MS

#### Psychology

Sheila Crowell, PhD

#### <u>Pediatrics</u> Brooks Keeshin

Brooks Keeshin, MD

#### <u>UPDB</u>

Ken Smith, PhD Alison Fraser, MS Zhe Yu, MS; Richard Pimentel MS

#### Human Genetics

Aaron Quinlan, PhD Gabor Marth, PhD Brent Pedersen, PhD Barry Moore, PhD Shawn Rynearson, PhD

#### Neurobiology & Anatomy

Megan Williams, PhD Elliott Ferris, MS Chris Gregg, PhD Alex Shcheglovitov, PhD

#### **Cardiovascular Genetics**

Steve Hunt, PhD Ted Adams, MD

#### Scientific Computing Institute Alex Lex, PhD

Carolina Nobre, PhD

#### Office of the Medical Examiner

Erik Christensen, MD (Chief Medical Examiner) Todd Grey, MD (former Chief Medical Examiner) W. Brandon Callor, MS staff assisting with collection

National Institute

of Mental Health

#### **External Collaborators**

David Crockett, PhD (IH) David Brent, MD (U Pittsburgh) Virginia Willour, PhD (U Iowa) Psychiatric Genomics Consortium

#### Janssen Research LLC

Qingqin Li, PhD

#### <u>Support</u>

NIH; AFSP; Tanner Foundation; Utah Genome Project; Janssen LLC; Fund in Memory of Raymond Crump; Nat.Ctr. Rsch Res.; HCI; HMHI



PHARMACEUTICAL COMPANIES OF

lohnson a lohnson

UNIVERSITY OF UTAH

#### Utah Genome Project

Jansser





# Suicide Risk Resources for Prevention and Research

#### **PREVENTION, SERVICES**

National Suicide Prevention 24-Hour Hotline: 1-800-273-8255 or text 838255 National Suicide Prevention website: <u>http://suicidepreventionlifeline.org/</u> American Foundation for Suicide Prevention: <u>https://afsp.org/about-</u> <u>suicide/preventing-suicide/</u>

#### RESEARCH

American Foundation for Suicide Prevention: <u>https://afsp.org/about-</u> <u>suicide/suicide-statistics/</u>

Centers for Disease Control:

<u>https://www.cdc.gov/nchs/pressroom/sosmap/suicide-mortality/suicide.htm</u> National Alliance for the Mentally III (NAMI):

https://www.nami.org/NAMI/media/NAMI-

Media/Images/FactSheets/Suicide-FS.pdf, https://www.nami.org/learn-

more/mental-health-conditions/related-conditions/risk-of-suicide

# Thank you!

Presenter Contact Information:

Dr. Hilary Coon

Professor

Department of Psychiatry

University of Utah School of Medicine

hilary.coon@utah.edu



Mountain Plains (HHS Region 8)



Mountain Plains (HHS Region 8)

C Prevention Technology Transfer Center Network Funded by Substance Abuse and Mental Health Services Administration



### Suicide Prevention Across the Educational Continuum 6-Part Webinar Series



Mountain Plains (HHS Region 8)

C Mental Health Technology Transfer Center Network Funded by Substance Abuse and Mental Health Services Administration



Mountain Plains (HHS Region 8)

Prevention Technology Transfer Center Network Funded by Substance Abuse and Mental Health Services Administration

# Thank You

# <u>Mountain Plains MHTTC:</u> mountainplains@mhttcnetwork.org

# <u>Mountain Plains PTTC:</u> mountainplains\_pttc@utah.edu